Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 11: e16500, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38047028

RESUMO

Background: Seagrass meadows provide valuable ecosystem services but are threatened by global change pressures, and there is growing concern that the functions seagrasses perform within an ecosystem will be reduced or lost without intervention. Restoration has become an integral part of coastal management in response to major seagrass declines, but is often context dependent, requiring an assessment of methods to maximise restoration success. Here we investigate the use of different restoration strategies for the endangered Zostera capensis in South Africa. Methods: We assessed restoration feasibility by establishing seagrass transplant plots based on different transplant source materials (diameter (ø) 10 cm cores and anchored individual shoots), planting patterns (line, dense, bullseye) and planting site (upper, upper-mid and mid-intertidal zones). Monitoring of area cover, shoot length, and macrofaunal diversity was conducted over 18 months. Results: Mixed model analysis showed distinct effects of transplant material used, planting pattern and site on transplant survival and area cover. Significant declines in seagrass cover across all treatments was recorded post-transplantation (2 months), followed by a period of recovery. Of the transplants that persisted after 18 months of monitoring (~58% plots survived across all treatments), seagrass area cover increased (~112%) and in some cases expanded by over >400% cover, depending on type of transplant material, planting arrangement and site. Higher bioturbator pressure from sandprawns (Kraussillichirus kraussi) significantly reduced transplant survival and area cover. Transplant plots were colonised by invertebrates, including seagrass specialists, such as South Africa's most endangered marine invertebrate, the false-eelgrass limpet (Siphonaria compressa). For future seagrass restoration projects, transplanting cores was deemed the best method, showing higher long-term persistence and cover, however this approach is also resource intensive with potentially negative impacts on donor meadows at larger scales. There is a clear need for further research to address Z. capensis restoration scalability and improve long-term transplant persistence.


Assuntos
Ecossistema , Zosteraceae , África do Sul
2.
Sci Rep ; 12(1): 5088, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35332233

RESUMO

Human pressures are pervasive in coastal ecosystems, but their effect magnitudes are masked by methodological limitations. Government lockdowns associated with the global COVID-19 pandemic can address this gap since lockdowns are effectively manipulations of human presence in ecosystems at scales unachievable otherwise. We illustrate this using a study on shorebirds in an urban South African sandy beach ecosystem. Data collected prior to (2019) and during the COVID-19 (2020) pandemic indicated an inverse relationship between shorebird and human numbers, but this was stronger in 2020. In 2020, human exclusion resulted in a six-fold increase in shorebird abundance relative to 2019. Following easing of lockdowns, shorebird abundance declined by 79.6% with a 34.1% increase in human density. Our findings highlight the sensitivity of shorebirds to recreational disturbance, the potential for current methodological approaches to underestimate repercussions of disturbance and the capacity for COVID-19 lockdowns to refine understanding of human-induced stress in ecosystems.


Assuntos
COVID-19 , Ecossistema , COVID-19/epidemiologia , Controle de Doenças Transmissíveis , Humanos , Pandemias/prevenção & controle , África do Sul/epidemiologia
3.
Mar Environ Res ; 173: 105541, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34871952

RESUMO

A key challenge for natural resource management is how to detect effects of environmental stress on individuals and populations before declines in abundance occur. Variability in carbon and nitrogen isotope composition (δ13C and δ15N) among consumers can provide information on the population trophic niche and how it may change in response to environmental stress. We measured δ13C and δ15N values in primary producers and in an ecosystem engineer, the bioturbating sandprawn Kraussillichirus kraussi, in Langebaan Lagoon, South Africa, along a human disturbance gradient. Diet partitioning mixing models were coupled with isotope niche analyses and individual body condition data to investigate shifts in resource utilisation and diet plasticity from minimally to highly disturbed sites. The δ15N values of seagrass, Zostera capensis indicated a nutrient gradient, with the highest δ15N values at highly disturbed sites indicating either anthropogenic or marine nitrogen inputs. A decreasing δ15N signal with distance from human disturbance/mouth of lagoon was however not evident for sandprawns nor their presumed dietary sources (phytoplankton, microphytobenthos or sediment organic matter), likely because of faster isotope turnover time compared to seagrass and/or differential fractionation for sandprawns among the sites. Sandprawn isotope niche sizes varied among sites, with no trend along the disturbance gradient. The smallest niche coincided with uniform feeding on microphytobenthos according to mixing models. On an individual level, deviating isotope values from population means were correlated to better body condition, suggesting that a divergent feeding strategy is beneficial. Our results support a generalist feeding behavior of the sandprawns with no evidence of reduced physiological status at the site with most human disturbance.


Assuntos
Ecossistema , Comportamento Alimentar , Isótopos de Carbono/análise , Cadeia Alimentar , Humanos , Isótopos de Nitrogênio/análise , Fitoplâncton
4.
Sci Rep ; 10(1): 12039, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32694566

RESUMO

By defecating grasses into aquatic systems at massive scales and intensities, hippos can initiate complex changes to aquatic ecosystems. However, consequent effects on food webs are not well understood, particularly regarding shifts in basal resource contributions to consumer diets and their physiological condition. Here, we use fatty acid analysis to show that dense hippo aggregations and high dung loading are associated with (1) alterations to basal resource pools, (2) reduced quality of sediment organic matter and (3) increases in terrestrial and bacterial biomarker levels, but declines in those of diatoms in estuarine secondary consumers. While hippo defecation can increase boundary permeability between terrestrial and aquatic systems, our findings indicate that this may lead to a shift from a microphytobenthic food web base to one with increasing bacterial contributions to higher consumers. Our findings expand understanding of the mechanisms by which an iconic African megaherbivore indirectly structures aquatic ecosystems.


Assuntos
Artiodáctilos , Ecossistema , Ácidos Graxos/análise , Fezes/química , Cadeia Alimentar , Análise de Variância , Animais , Biomarcadores , Defecação , Rios
5.
Sci Rep ; 10(1): 1913, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-32024954

RESUMO

Managing coastal ecosystems and preserving socio-ecological functioning require a comprehensive understanding of ecological services provided by resident organisms. Here, we provide novel information on water-filtration activities of endobenthic sandprawns (Callichirus kraussi), which are key ecosystem engineers in South African coasts. We demonstrate experimentally that benthic engineering by sandprawns reduces phytoplankton biomass by roughly 50%. Using long-term estuarine data, we demonstrate similar reductions in phytoplankton biomass (by roughly 70%) in sandprawn-dominated areas. Increased burrow wall chlorophyll-a relative to surface sediments that was evident in experiments suggests that pelagic filtration occurs through bi-directional water pumping and phytoplankton adsorption onto burrow walls. Our findings expand understanding of the ecological relevance of sandprawns and functionally similar organisms, the mechanisms by which they engineer ecosystems and their role in mediating coastal bentho-pelagic coupling. Our findings also highlight the potential for deposit-feeders to be used as nature-based solutions to counter coastal eutrophication.

6.
PLoS One ; 14(4): e0215129, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30973955

RESUMO

Despite knowledge that seagrass meadows are threatened by multiple global change stressors, significant gaps exist in current knowledge. In particular, little is known about the interactive effects of warming and eutrophication on seagrasses globally, or about responses of African seagrasses to global change, despite these ecosystem engineers providing critical goods and services to local livelihoods. Here, we report on laboratory experiment assessing the main and joint effects of warming and nutrient enrichment on Cape eelgrass (Zostera capensis) from the West coast of South Africa, in which morphological attributes, photosynthetic efficiency and elemental content were assessed. Results indicate that shoot density, leaf length, aboveground biomass and effective quantum yield were negatively impacted by both warming and nutrient enrichment. Growth rate, leaf density and leaf width decreased with increasing nutrient levels but not temperature. In addition, epiphytic fouling on seagrass leaves were enhanced by both warming and nutrient enrichment but with warming eliciting a greater response. Collectively, our findings indicate a stronger effect of enrichment on Z. capensis performance relative to warming, suggesting that the upper levels of coastal eutrophication upon which our experiment was based is likely a stronger stressor than warming. Our findings also highlight limited interaction between warming and nutrient enrichment on Z. capensis performance, suggesting that effects of these stressors are likely to be propagated individually and not interactively. Our findings raise awareness of susceptibility of Z. capensis to eutrophication and the need to manage nutrient inputs into coastal ecosystems to preserve meadows of this seagrass and the critical ecosystem functions they provide.


Assuntos
Alismatales/fisiologia , Ecossistema , Eutrofização , Aquecimento Global , Fotossíntese , Estresse Fisiológico , África , Biomassa
7.
Sci Rep ; 6: 37359, 2016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27853283

RESUMO

Hippos transfer massive quantities of trophic resources from terrestrial to aquatic ecosystems through defecation. The ramifications of the latter for the functioning of benthic ecosystems are unknown, but are dependent ultimately on rates of utilisation relative to inputs. Low input and high utilisation can strengthen bottom-up pathways and enhance consumer biomass and abundance. However, if inputs exceed utilisation rates, dung can accumulate, leading to a decline in water quality, with important repercussions for resident assemblages. Here, we quantify the consequences of hippo dung inputs on benthic assemblages in an estuarine lake in South Africa. The system supports over a thousand hippos, and during recent drought periods (extending over a decade), hippo dung has been observed to form mats over benthic habitats. Enrichment of plots using exclusion/inclusion cages with dung at naturally occurring concentrations indicated a decline in benthic chl-a by roughly 50% and macrofaunal abundance, biomass and richness by up to 76, 56 and 27% respectively. Our findings suggest that persistent inputs of hippo dung can act as an important stressor of benthic systems, leading ultimately to a loss of productivity. Accumulation of hippo dung over benthic habitats is therefore an important mechanism by which hippos indirectly structure aquatic ecosystems.


Assuntos
Artiodáctilos , Invertebrados/fisiologia , Plantas , Animais , Biomassa , Fezes , Lagos , Dinâmica Populacional , África do Sul , Qualidade da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...